- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract An in-beam gamma-ray spectroscopy study of the even–even nucleus92Mo has been carried out using the30Si +65Cu,18O +80Se reactions at beam energies of 120 and 99 MeV, respectively. Angular distribution from the oriented state ratio (RADO) and linear polarization (Δasym) measurements have fixed most of the tentatively assigned spin-parity of the high-energy levels. A large-scale shell-model calculation using the GWBXG interaction has been carried out to understand the configuration and structure of both positive and negative parity states up to the highest observed spin. The high-spin states primarily originate from the coupling of excited proton- and neutron-core structures in an almost stretched manner. The systematics of the energy required to form a neutron particle-hole pair excitation,νg9/2→νd5/2, is discussed. The lifetimes of a few high-spin states have been measured using the Doppler shift attenuation method. Additionally, a qualitative argument is proposed to explain the comparatively strong E1 transition feeding the 7310.9 keV level.more » « less
-
Malik, Vishal; Palit, R.; Srivastava, P_C; Dey, P.; Patel, Deepak; Das, Biswajit; Garg, U.; Goel, Nidhi; Kundu, A.; Sindhu, Aditi; et al (, Physical Review C)
An official website of the United States government
